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Abstract. A thermodynamic analysis is presented of the equilibria between liquid solutions of guest A in 
guest B and solid solutions of HA in HB, where HA and HB are isomorphous 1:1 compounds of these 
guests with the host H. (The treatment is applicable whether or not HA and HB are inclusion 
compounds.) The mole ratio of A to B in the liquid, Rt, is generally different from the same ratio in the 
solid, R,. Data on many systems have indicated a linear relation between In R 1 and In Rs, but to date 
no theoretical basis has been forthcoming. The present analysis shows that this relation is usually 
sigmoidal in shape but, with certain restrictions, is nearly linear. The slope and intercept are interpreted 
in terms of the equilibrium constant for the displacement of A from HA by B and the deviations from 
ideality in the liquid and solid phases. 

If the deviations from ideality in the liquid phase are known or can be estimated, those for the solid 
phase can be determined, and thermodynamic equilibrium constants and standard free energy changes 
for the displacement of A by B calculated. These methods were applied to available data for the 
following pairs of guests with the host Ni(4-mepy)4(NCS)2: p-xylene with each of p-dibromobenzene, 
p-xylene-d6, p-xylene-dlo, p-bromotoluene, p-chlorotoluene, p-dichlorobenzene, p-fluorotoluene, ethyl- 
benzene, toluene, and benzene, and the pairs p-dichlorobenzene/p-chlorotoluene and ethylbenzene/ 
toluene. 

Key words. Thermodynamics of guest competition, Ni(4-mepy)4(NCS)2. 

1. Introduction 

The host tetrakis(4-methylpyridine)nickel(II) isothiocyanate (H) forms numerous 
isomorphous inclusion compounds with liquid aromatic guests [1, 2, 3, 4, 5]. When 
excess of two such guests, A and B, are equilibrated with H, two phases are formed: 
a solid solution of the compound of H with A, HA, in the compound of H with B, 
HB, and a liquid solution of A in B. The systems considered below are those in 
which H is usually insoluble in A and B and in which HA and HB are 1:1 inclusion 
compounds, but the treatment is applicable regardless of the crystal structure of HA 
and HB. 

The phase behaviour is shown in Figure 1. It is seen that the guests are 
distributed between liquid and solid phases, but that the ratios of A to B in the two 
phases are different, causing the tie lines to be skewed. Some of the studies [2] have 
been strictly isothermal, many [3, 4, 5] have been at 'room temperature', and two [3] 
have been in the presence of a cosolvent. The resulting data are reported as RI and 
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Fig. 1. Schematic isotherm for a system of two guests competing for the same host. 

Rs, R~ is the mole ratio of A to B in the liquid phase and Rs is the ratio in the solid 
phase. When in R1 as abscissa is plotted against In R~ as ordinate the data always 
seem to fall on a straight line within experimental error, so that 

In R~ = m In R i +  b (1) 

Considering the high probability that the coexisting solutions, especially the solid 
ones, are not ideal, this fact was always surprising, and the present study was 
undertaken to find the reason for the apparent linearity. Another objective was to 
determine whether the experimental data could be used to yield such thermody- 
namic data as equilibrium constants connected with the distribution phenomena. 
Lipkowski and co-workers [5] had indicated that the intercept on the In Rs axis of 
the above-mentioned plot "may be used as a direct measure of the thermodynamic 
constant of clathration equilibria" - a concept which seemed to this author to be 
too simple to be true, except as a limiting case. 

Although most of the data used were not obtained under strictly isothermal 
conditions it was assumed in what follows that they were for a temperature of 
about 25°C. It was felt that temperature fluctuations of + 5 ° would be unimportant 
compared with experimental error, particularly as the guests were covalent 

substances. 

2. Distribution Equilibria 

The equilibria can be formulated as a distribution of each guest between liquid and 
solid phases: A (in liquid s o l u t i o n ) ~  A (in solid solution) and B (in liquid 
solution) ~ B (in solid solution). Alternatively, since the solid phase is a binary 
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solid solution, one may formulate the equilibrium as HA (solid soln) + B (liquid 
soln) ~- HB (solid soln) + A (liquid soln) where H is the host, HA and HB are the 
isomorphous 1:1 inclusion compounds of the (binary) solid phase, and A and B are 
the components o f  the (binary) liquid phase. The thermodynamic equilibrium 
constant, K, can then be expressed in terms of mole fractions, x, and activity 
coefficients, ?, a s  K=(XHB(s)~HB(s)XA(I)~A(1))/(XttA(s)~HA(s)XB(I)~B(I)). This will be 
rewritten for brevity, as 

K = (RI/Rs)(THB/7HA)(7A/?B) (2) 

where R 1 is the ratio of the mole fractions of A to B in the liquid phase, Rs is the 
ratio of the mole fractions of HA to HB in the solid phase, 7a and 7B refer to the 
liquid phase and ?HA and 7HB to the solid. The standard states for A and B in the 
liquid will be the respective pure liquids; the standard states for HA and HB will be 
the respective pure solid HA and HB. 

If, as a limiting case, both the solid and liquid phases are ideal, that is, if HA and 
HB follow Raoult's law in the solid and A and B follow it in the liquid phase, then 
the activity coefficients are all unity and Equation (2) reduces to K = R~/Rs, or 

In Rs = In Ri -- In K (3) 

Thus m = 1 and b = - l n K  in Equation (1), and b is a measure of K. Such a 
limiting case demands that the separation factor, s = R~/R~, be constant for all 
relative amounts of A and B, a situation which would appear to be unlikely unless 
A and B are very similar. 

Equation (2), on taking logarithms, yields 

In R~ = in RI + ln(THB/THA) -- ln(TB/ln 7A) --  In K (4) 

When XA(I~ and Xn(s) approach unity and therefore RI and R~ become very large, 
both 7HB/THA and YB/TA approach constant values, regardless of the functional form 
used to express the concentration dependence of the activity coefficients. Equation 
(4), therefore, approaches 

In R~ = in R~ + constant (5) 

Similarly, when xA(~ and xA(~) approach zero the activity coefficient ratios approach 
(different) constant values, and Equation (4) approaches 

In R~ = In R~ + constant (6) 

It follows that all plots of In R s against In R~ eventually become straight lines with 
unit slope in both directions, but the two linear portions have, in general, different 
intercepts. The shape of the line which joins the two limiting straight portions will 
be discussed immediately below. 

It will now be assumed that the activity coefficients in both phases can be 
expressed, at least approximately, by the '2-suffix Margules' equations [6] 

In 7A = B1 XBO)2 ," In 7B = BIX2Ao~ (7) 

In ~HA = BsX~B; In YHB = BsX~A (8) 

where B~ and B~ are constants. These comply with the Gibbs-Duhem requirement 
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but imply a symmetry in the concentration dependence in both phases. Positive 
deviations from Raoult's law in the liquid phase give B 1 >0 ,  V > 1; negative 
deviations give B1 < 0, V < 1. Analogous statements are true for the solid phase. 

If  the liquid solutions are ideal or nearly so, B l = 0 and, from Equations (8), 
ln(yHB/YHA ) ---= B s ( X 2 A  - -  X 2 B )  = Bs(XHA --  XHB ) since XHA + XHB = 1. Equation (2) 
then becomes 

In s = Bs(XnA -- xnB) -- in K (9) 

A plot of in s against XHA- XHB then gives a straight line with slope Bs and 
intercept - in K. 

If the liquid solutions are not ideal, but if ?A and YB can be determined by some 
method, then, setting s ' =  (Rs/R1)(VB/YA) in Equation (2), yields 

In K = ln(YHB/YHn ) - -  In s' (10) 

which, with the help of Equations (8), gives 

In s' = Bs(XHA -- XHB) -- In K (11) 

This resembles Equation (9) to which it reduces when the liquid solutions are ideal. 
A plot of XHA -- XHB against Ins '  should, in this event, be linear and yield Bs, the 
solid phase activity coefficients, and K. If the plot is smooth but not straight the 
approach described immediately below is suggested. 

Alternatively, if the activity coefficients in the liquid are available, and if the 
distribution data are of sufficiently good quality, 7HA and 7HB can be expressed by 
the '3-suffix Margules' equations [7] as In 7HA = BX2B + CX3B and 
In YHB (B 3 2 _ = +EC)XHA CX3A, where B and C are constants. Subtracting the first 
of these equations from the second and substituting into Equation (10) gives, on 
simplification, the polynomial 

Ins '  = --3CxZA + (2B + 3C)XHA --  (B + C + In K) (12) 

Since Ins '  is known for various values of XHA, the experimental data can be fitted 
to Equation (12). by quadratic least-squares. The coefficients thus determined can 
then be used to find B, C, the values of YEA and YHB, and K. 

Returning to the general situation where neither B~ nor Bs is zero, but where 
Equations (7) and (8) are valid, we note the interesting and crucial fact that a plot 
of ln(XA/XB) as ordinate against XA -- XB as abscissa, although sigmoidal in shape, 
has a nearly linear portion between approximately XA- XB =- -0 .50  and +0.50, 
that is, between XA = 0.25 and 0.75, or R between 0.3 and 3. The line also passes 
through the origin. Within this range, therefore, ln(XA/XB) is nearly proportional to 
(XA -- XB), or ln(XA/XB) ~ k(x  A - xB), with k in the neighborhood of 2.14. Accep- 
tance of this simplification means that, in Equation (4), ln(THB/YHA ) can be replaced 
by (B~/2.14)ln(XHA/XHB) and ln(yB/yA) by (B~/2.14)ln(XA(1)/XB(1)), provided the 
data for both phases lie in the appropriate range. We have, then, 
In K ~  In R1 - In R~ + (Bd2.14) In R~ - (B1/2.14) In R~, or 

2.14 In Rs ---- 2.14 - -  B 11n R1 + - -  In K (13) 
2.14 - B~ B s - 2.14 

Comparison of this with Equation (1) shows that, if the experimental data lie in the 
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proper range, the slope m, which is always positive, may be identified with 
(2 .14 -  B1)/(2.14-- B~) and the intercept with [2.14/(Bs- 2.14)] In K. Thus the 
slope is influenced by deviations in both the liquid and solid phases but the 
intercept by those in the solid phase only, and by the equilibrium constant. It is 
seen, therefore, that Equation (1) does have a theoretical justification. Clearly, if 
both B~ and B s are zero, Equation (13) reduces to Equation (3), and if they are 
equal but non-zero the slope is still unity, the non-ideality of one phase cancelling 
that of the other. Furthermore, since IB~ land  IBsl could never be larger than 2.14, 
then, if B I > Bs (algebraically), m < 1, and conversely. It is now evident why the oft 
used Equation (1) has seemed to be such a good representation of the experimental 
results in spite of probably considerable deviations from ideality. The experimental 
data are least accurate at low and high values of R, so that what may have been an 
actual curvature of the lines was attributed to experimental error and thus dis- 
counted, and the plot taken as linear. It must be admitted, that the distributions in 
many of the systems studied are so skewed that, although both XA(1) and XHA cover 
a fairly wide range there are few data points where both lie in the required range 
for Equation (13) to be valid. Nevertheless, it is a surprisingly good approximation, 
as will be seen below. 

We now return to the shape of that portion of the In R~/ln R~ graph which joins 
the two limiting straight lines. This, of course, is the region where the experimental 
data lie. Any one system is characterized by the magnitudes of the three variables, 
B~, B~, and K. Twenty-seven (33) sets of calculations of In R1 for arbitrary, closely 
spaced R~ values were performed using all possible combinations of Bl = 0, 1 and 
- 1 ,  B~=0, 1, and - 1 ,  and K =  1, 1/3, and 3 in Equation (2). It was thus 
determined that the  shapes of the plots fall in one of the five categories which are 
denoted Types A, B, C, D, and E, and illustrated schematically in Figure 2. Table 
I gives the conditions producing each type. Types D and E occur when B~ and B s 
are coincidentally equal or nearly equal. Except where B1 = B~ ~ 0, a change in K, 

/ / / / / /  
/ / /  ,/ / Y / Y  

/ / / , / / /  
A B C D E 

L, 
Fig. 2. Five types of graphs possible in distribution systems. The dashed lines indicate how a selectivity 
reversal could occur at the points of intersection. 
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Table I. The five types of graphical behaviour for In R 1/ln R S plots. 

Type Shape Conditions 

A linear B~ = B S ~ 0, K = 1; B~ = B S = 0 
B sigmoidal BI < Bs 
C reverse sigmoidal B 1 > B~ 
D "positive ripple" B l = B~ > 0, K < 1; B~ = Bs < 0, K > 1 
E "negative ripple" B~ = B S > 0, K > 1; B~ = B S < 0, K < 1 

keeping B~ and B~ unchanged, causes the graph to be translated horizontally and/or 
vertically, thereby changing the intercepts on both axes. It  should be emphasized 
that (1) any curvatures in Figure 2 are mild ones experimentally, (2) the linear end 
portions, all with unit slope, are well beyond the range of the experimental data, (3) 
the inequalities in Table I are algebraic ones, and (4) no at tempt is made in the 
figure to imply the values of  the intercepts on the axes. As the range of the 
experimental data lies in the curving portions in Types B to E, the measured slopes, 
m, are > 1 for Type B, < 1 for Type C, and not readily predictable for Types D 
and E. 

A corollary to the preceding discussion concerns the three types of  distribution 
described by Bakhius Roozeboom for complete series of  solid solutions [8]. 
Distributions in which R1 > Rs or R1 < Rs throughout the entire range of composi- 
tion were designated by him as Type I. Such behaviour would result if all the tie 
lines of  Figure 1, when produced upwards, pass to the same side of the H apex or 
through it. In his Type I I  there is a region where the composition of the solid phase 
varies so much more rapidly than that of  the coexisting liquid phase that the tie 
lines on the A side of  the diagram, when produced upwards, pass to the left of the 
apex while those on the B side pass to the right side. Such behaviour suggests a 
tendency toward a break in the series of  solid solutions (partial miscibility). In his 
Type I I I  there is a region where the composition of the solid phase varies much 
more slowly than that of  the coexisting liquid, so that the tie lines on the A side, 
when produced upwards, pass to the right of  the apex while those on the B side pass 
to the left - suggesting a tendency toward the formation of a compound of HA and 
HB. 

In comparing the Roozeboom classification with the types shown in Figure 2 it 
is to be noted that, if a system shows a selectivity reversal, as in the Roozeboom 
Types II  and III,  that is, if it has a tie line in Figure 1 where R1 < R~ on one side 
but R~ > R~ on the other, then the corresponding line of  Figure 2 must intersect the 
45 ° diagonal where In R~ = In R~ and therefore R~ = R~. There seems to be no 
requirement that this occur in any of the types, but it could occur in Types B and 
C. Thus Roozeboom's  Type I could arise from Types A, B, or C; his Type I I  could 
arise in Type B, and Type I I I  in Type C if the 45 ° diagonal of Figure 2 were to 
intersect the curved middle portion, as shown by the dashed lines. These conclu- 
sions are consistent with the requirements stated in Table I: for Type B, where 
B 1 < Bs,  large positive deviations from ideality in the solid phase would promote  
partial miscibility; for Type C, where the reverse is true, large negative deviations 
would be in line with possible compound formation between H A  and HB. 
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3. Application to Solid Solutions of Inclusion Compounds of 
Ni(4-mepy)4(NCS)2 

The foregoing treatment was applied to data for twelve systems (guest pairs) 
involving the host Ni(4-mepy)4(NCS)2, the most commonly studied host to date. 
The published data are in the form of pairs of R1 and Rs values for each system. As 
indicated later, some data points were rejected when, in the determination of Bs 
through Equation (11), it became apparent that they were subject to considerable 
error. Most of these points were for large values of R1 and/or Rs. In the pairs with 
p-dichlorobenzene and p-dibromobenzene the solid forms of these substances are 
encountered. To avoid their presence, only those regions of the system were studied 
where their concentrations are low. 

The general procedure adopted for every system was to calculate s', plot 
XHA- XHB against In s ' ,  and determine the best straight line through the resulting 
points according to Equation (11). B~ and K for each guest pair determined in this 
way are shown in Table II. This permits the calculation of ?HA and ?H, through 
Equation (8). The standard free energy change at room temperature, AGr °, calcu- 
lated from K for the displacement of A from HA by B, is also listed. 

The values of ?A and 7B needed in the above calculationwere estimated by means 
of the Regular Solution Theory of Hildebrand [9], according to which 

- -  : m 2 - -  R T  In 7A = V~(b2(6A 6,)2; R T  In 7, VB q~A(~A 6B) 2 

where V~, V~ are the molar volumes of the respective guests, ~bA, 4). their 
respective volume fractions, 6a, 6, their solubility parameters, and where R and T 
have their usual meaning. The solubility parameters used and their sources are 
included in Table II. It is recognized that Regular Solution Theory is less reliable 
for solutions containing polar components, but the results are presented for what 
they are worth. In any case, the polarity of the polar components is small except for 
p-fluoro-, p-chloro-, and p-bromotoluenes. Although YA and 7,, determined in this 
way meet the requirements of the Gibbs-Duhem equation they are not necessarily 
expressible by Equations (7). Nevertheless, they can be approximately so expressed 
using the values of B~ given in Table II, which are included to convey some idea of 
the magnitude of the deviations from ideality in the liquid phase. 

In the second and third systems listed, and in which A and B differ only 
isotopically, a cosolvent, pentane, had been used as a diluent. Although p-xylene- 
pentane solutions are not ideal - the solubility parameters for these components are 
18.0 and 14.5 jl/2 cm-3/2, respectively - it is probably safe to assume that 7A/T, is 
close tO unity because of the similarity of isotopomers. For these two systems, then, 
B~ is assigned a value of zero. 

It should be emphasized that the In S'/(XA<~) -- XB<~)) graph is a severe test of the 
quality of the data. The considerable scatter in the points so obtained and/or a 
paucity of data indicate that the use of Equation (12) and the resulting quadratic 
fitting is a meaningless refinement for the present data. 

The values of s needed in the above treatment were obtained without smoothing 
the original data, the smoothing process having been deferred until Equation (11) 
was applied. The possibility of smoothing the data initially, according to Equation 
(1), was considered, followed by application of Equation (11) to the smoothed data. 
It was felt preferable, however, since Equation (11) has a theoretical basis whereas 
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Equation (1) is only an approximation, to use Equation (11) for the smoothing, 
and not to rely on Equation (1) for this purpose. Actually, there was little difference 
between the results from the two procedures. 

In spite of the approximate nature of Equation (13) it was used to calculate m 
and b for each system. Table II includes the results and compares them with those 
found originally from Equation (1). The agreement is surprisingly good, consider- 
ing the restrictions on the validity of Equation (13). 

Inspection of Table II shows that, if one can accept the predictions of Regular 
Solution Theory, deviations from ideality in the liquid phase are zero or small for 
all but the systems containing p-xylene with p-dichlorobenzene, p-dibromobenzene, 
and p-bromotoluene. Deviations in the solid phase are all non-zero, being slightly 
negative for half of the systems reported and positive for the remainder. There 
seems to be no correlation between the magnitude of the deviations and the 
difference in the van der Waals lengths of the members of each guest pair. In over 
half of the systems B~ > B~ (algebraically). The significance of this is not evident, 
but it gives lines with a slope < 1 in In R l / ln  R S plots, as shown above. 

When, for a triad of guests (A, B, and C) K has been determined for all three 
guest pairs (A/B, A/C, BJC), a check on the consistency of the data is possible 
because K for the A/B pair (/(Am) should equal KA/c/KB/c. Two such triads are 
A = p-xylene, B = p-dichlorobenzene, C = p-chlorotoluene and A = p-xylene, 
B = ethylbenzene, C = toluene. In the first triad, taking equilibrium constants from 
Table II, 0.87 is to be compared with 0.99/0.98 or 1.01; in the second 0.15 is to be 
compared with 0.069/0.22 or 0.31. The agreement leaves much to be desired. This 
test is a severe one, however, and is probably all that can be expected considering 
the scatter of much of the data when Equation (11) is applied to find B~. 

In conclusion, it is interesting to plot In R~ against In R~ using values calculated 
from B~, Bs, and K given in Table II, in order to determine how well the raw data 
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Fig. 3. Distribution plot in the system p-×ylene-toluene Ni(4-mepy)4(NCS)2 at room temperature, 
Line, cMculated; points, experiment. 
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are reproduced and how sigmoidal is the resulting plot. For this purpose the system 
p-xylene/toluene was chosen because (1) the numerical value of B ~ -  B s is large 
(and therefore more likely to show the desired effect) and (2) at least six data points 
are available. With B1 = 0.003, B~ = - 1 . 4 ,  and K = 0.069, R~ was first found for 
rounded values of XA(s~. Then s' was determined for each value of XA(~) using 
Equation (11), and s' corrected to s. Knowing R~, R1 could be found. In R1 was 
then plotted against In Rs to give the slightly reverse sigmoidal curve shown in 
Figure 3 (Type C). The original raw data [3] are also shown as points on or near 
the line. Calculation shows that the latter points fit the mildly curved line better 
than the straight line to which they were originally fitted (Equation (1)). At the 
same time, however, the points are not far from a straight line and, for lack of 
further information, any deviations from a straight line could easily be mistaken for 
experimental error. 
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